一种基于卷积神经网络的工业字符识别方法
Abstract:
本发明提出了一种基于卷积神经网络的工业字符识别方法,包括建立字符数据集,对字符数据集进行数据增强及预处理,建立CNN集成模型,所述模型包含3个不同的个体分类器,然后,利用模型进行训练,训练分为两步完成,第一步为离线训练,获取离线训练模型,第二步为在线训练,将离线训练模型用作初始化,进行特定生产线字符数据集的训练,获取在线训练模型;以及对目标图形进行预处理、字符定位和单个字符图像分割;将分割好的字符图像送入已训练好的在线训练模型中,得到CNN集成模型中三个分类器将单个目标图像分类为每个类别的概率值;采用投票的方式进行最终决策,得到测试数据的类别结果。本发明能够对不同生产线上的字符进行快速、高效的识别。
Public/Granted literature
Patent Agency Ranking
0/0