基于神经网络的COD紫外光谱在线检测优化方法
Abstract:
本发明公开了一种基于神经网络的COD紫外光谱在线检测优化方法,属于水体有机物检测领域,所述方法包括:测量待测水样的浊度、悬浮物、电导率和pH值;用紫外光谱法测量待测水样的COD值,作为待测水样的COD初始值;将待测水样的浊度、悬浮物、电导率、pH值和COD初始值作为已训练的BP神经网络的输入向量,得到待测水样的COD优化值。本发明可依据水体多种影响因素的指标进行高精度的神经网络建模,以提高紫外光谱法COD在线测量的精度。本发明中考虑的影响因素有水样的浊度、悬浮物(SS)、电导率和pH值。这些因素会影响紫外光谱法测量COD值的准确性。通过神经网络的建模,可以精确的评估这些因素对COD测量值的影响,进而获得更精确的COD优化值。
Public/Granted literature
Patent Agency Ranking
0/0