一种基于深度强化学习的交通信号自适应控制方法
Abstract:
本发明涉及交通控制及人工智能技术领域,一种基于深度强化学习的交通信号自适应控制方法,包括以下步骤:(1)定义交通信号控制agent、状态空间S、动作空间A和回报函数r,(2)深度神经网络的预训练,(3)使用深度强化学习方法对神经网络进行训练,(4)依据训练好的深度神经网络进行交通信号控制。通过对磁感、视频、RFID和车联网等采集到的交通数据进行预处理,获取包含车辆位置信息的交通状态的低层表示;其次,通过深度学习的多层感知器对交通状态进行感知,得到当前交通状态的高层抽象特征;在此基础上利用强化学习的决策能力依据当前交通状态的高层抽象特征选择合适的配时方案,实现交通信号自适应控制,以减少车辆旅行时间,确保交通安全、畅通、有序和高效地运行。
Public/Granted literature
Patent Agency Ranking
0/0