基于深层门限卷积神经网络的图像超分辨方法
Abstract:
本发明公开一种基于深层门限卷积神经网络的图像超分辨方法,主要解决现有技术在网络加深时图像超分辨效果会降低的问题。其实现步骤是:1.获取成对的低分辨和高分辨图像数据作为训练数据;2.定义一种门限卷积层,用它取代现有的卷积层,构建一个端到端的深层门限卷积神经网络;3.将训练数据输入深层门限卷积神经网络用Adam优化方法进行训练;4.利用训练好的深层门限卷积神经网络进行图像超分辨。本发明有效的减小了深层神经网络的梯度衰减的问题,实现了深层网络的图像超分辨应用,增强了图像超分辨效果;提高了图像超分辨的速度,可用于卫星遥感领域,医学领域,交通监控及视频压缩。
Public/Granted literature
Patent Agency Ranking
0/0