一种多特征提取与融合的智能故障诊断方法
Abstract:
一种多特征提取与融合的智能故障诊断方法,首先利用数据采集系统和传感器采集机械设备运行过程中的数据;然后以确定的长度截取不经任何处理的原始信号,将其分为训练样本和测试样本,做各段信号的频谱并归一化;基于自编码器构建多特征提取器,基于动态路由算法构建多特征融合器,基于softmax构建健康状态分类器;之后利用训练样本训练模型,提取区分各类健康状态的有效特征以及自适应地学习特征融合方法;最终将测试样本输入至模型中,验证模型的有效性;本发明实现了小样本情况下设备故障特征的自适应提取与故障状态的智能诊断,训练时间短,结果准确可靠。
Public/Granted literature
Patent Agency Ranking
0/0