非平稳数据流下的风电机组发电功率自适应预测方法
Abstract:
本发明公开了非平稳数据流下的风电机组发电功率自适应预测方法,包括以下步骤:S1.对数值天气预报NWP数据进行特征提取,得到样本相关特征和序列相关特征,构成样本‑序列特征向量;S2.根据样本‑序列特征向量进行相似度搜索和聚类,划分出不同的气象模式;S3.使用每个气象模式的历史NWP和功率数据离线训练LightGBM网络,得到功率预测模型,根据实时收集NWP气象数据进行功率预测,基于漂移检测与DDA算法,对每个气象模式下功率预测模型的预测性能进行实时监测,并自适应地调整模型参数,实现非平稳数据流下风电功率自适应预测。本发明能够实时监测输入输出映射关系的变化,并自适应地调整模型以适应新的映射关系,提高功率预测精度。
Patent Agency Ranking
0/0