Techniques for analytics-driven hybrid concurrency control in clouds
Abstract:
Exemplary techniques for analytics-driven hybrid concurrency control in clouds are disclosed that include a hybrid resource allocation module that can concurrently utilize an optimistic allocation scheme alongside a pessimistic allocation scheme. Machine learning techniques utilizing previous activity history of applications can be used to train a cluster model that is integrated by a hybrid resource allocation module to classify applications in either a pessimistic cluster or an optimistic cluster that identifies under which scheme requests from the applications will be processed.
Information query
Patent Agency Ranking
0/0