Advanced E-fuse structure with controlled microstructure
Abstract:
In one aspect of the invention, a method for fabricating an e-Fuse device is described. A trench structure is provided. The trench structure includes an anode region, a cathode region and a fuse element which interconnects the anode and cathode regions. The trench is provided in a dielectric material on a first surface of a substrate. The fuse element has a smaller cross section and a higher aspect ratio than the anode and cathode regions. The trench is filled with copper. An annealing step converts the copper to create a large grained copper structure in the anode and cathode regions and a fine grained copper structure in the fuse element. Another aspect of the invention is an e-Fuse device which includes an anode region, a cathode region and a fuse element which interconnects the anode and cathode regions in a dielectric material on a first surface of a substrate. The fuse element has a smaller cross section and a higher aspect ratio than the anode and cathode regions. The anode and cathode regions are comprised of a large grained copper structure and the fuse element is comprised of a fine grained copper structure.
Public/Granted literature
Information query
Patent Agency Ranking
0/0