Vacuum commutation apparatus and methods
Abstract:
The present invention provides a method and apparatus for transporting a discrete element. A preferably rotatably driven vacuum commutation zone (or internal vacuum manifold), preferably internal to a preferably independently driven porous vacuum roll or drum is disclosed. The vacuum manifold applies vacuum through pores in the driven porous vacuum roll or puck in order to hold material against an external surface of the vacuum roll or puck. By independently controlling the vacuum commutation zone and the driven porous surface, unique motion profiles of the vacuum commutation zone relative to the driven porous surface can be provided. Micro vacuum commutation port structures are also disclosed.
Public/Granted literature
Information query
Patent Agency Ranking
0/0