Columnar database compression
Abstract:
Disclosed is a computer-implemented method of compressing data in a columnar database comprising at least one column partitioned into a plurality of partitions including at least one empty partition and a plurality of filled partitions each comprising data entries associated with a set of parameters having parameter values relevant to the recurrence frequency of the data entry in the partition, the data entries being compressed in accordance with a compression dictionary based on the respective recurrence frequencies of the data entries in the filled partition. The computer-implemented method comprises receiving forecasted parameter values for the set of parameters for an expected set of data entries to be stored in an empty partition of the column; predicting a recurrence frequency of the data entries in the expected set using the forecasted parameter values by evaluating the respective compression dictionaries of the filled partitions with a machine learning algorithm; generating a predictive compression dictionary for the expected set of data entries based on the predicted recurrence frequency of the data entries in the expected set; receiving the expected set of data entries; and compressing at least part of the received expected set of data entries using the predictive compression dictionary. A computer program product and a computer system for implementing such a method are also disclosed.
Public/Granted literature
Information query
Patent Agency Ranking
0/0