Fast grouping of time series
Abstract:
In some examples, a time-series data set can be analyzed and grouped in a fast and efficient manner. For instance, fast grouping of multiple time-series into clusters can be implemented through data reduction, determining cluster population, and fast matching by locality sensitive hashing. In some situations, a user can select a level of granularity for grouping time-series into clusters, which can involve trade-offs between the number of clusters and the maximum distance between two time-series in a cluster.
Public/Granted literature
Information query
Patent Agency Ranking
0/0