Manifold-aware ranking kernel for information retrieval
Abstract:
A manifold-aware ranking kernel (MARK) for information retrieval is described herein. The MARK is implemented by using supervised and unsupervised learning. MARK is ranking-oriented such that the relative comparison formulation directly targets on the ranking problem, making the approach optimal for information retrieval. MARK is also manifold-aware such that the algorithm is able to exploit information from ample unlabeled data, which helps to improve generalization performance, particularly when there are limited number of labeled constraints. MARK is nonlinear: as a kernel-based approach, the algorithm is able to lead to a highly non-linear metric which is able to model complicated data distribution.
Public/Granted literature
Information query
Patent Agency Ranking
0/0