Classifying signals using correlations of segments
Abstract:
An input signal may be classified by computing correlations between feature vectors of the input signal and feature vectors of reference signals, wherein the reference signals correspond to a class. The feature vectors of the input signal and/or the reference signals may be segmented to identify portions of the signals before performing the correlations. Multiple correlations of the segments may be combined to produce a segment score corresponding to a segment. The signal may then be classified using multiple segment scores, for example by comparing a combination of the segment scores to a threshold.
Information query
Patent Agency Ranking
0/0