Anomaly detection in volumetric images using sequential convolutional and recurrent neural networks
Abstract:
Computer-implemented methods and apparatuses for anomaly detection in volumetric images are provided. A two-dimensional convolutional neural network (CNN) is used to encode slices within a volumetric image, such as a CT scan. The CNN may be trained using an output layer that is subsequently omitted during use of the CNN as an encoder. The CNN encoder output is applied to a recurrent neural network (RNN), such as a long short-term memory network. The RNN may output various indications of the presence, probability and/or location of anomalies within the volumetric image.
Public/Granted literature
Information query
Patent Agency Ranking
0/0