Deriving optimal actions from a random forest model
Abstract:
Training a random forest model to relate settings of a network security device to undesirable behavior of the network security device is provided. A determination of a corresponding set of settings associated with each region of lowest incident probability is made using a random forest. The plurality of identified desired settings are presented as options for changing the network security device from the as-is settings to the identified desired settings. A choice is received from the plurality of options. The choice informs the random forest model. The random forest model ranks for a new problematic network security device the plurality of options for changing the new problematic network security device from as-is settings to desired settings by aggregating an identified cost of individual configuration changes, thereby identifying a most cost-effective setting for the network security device to achieve a desired output of the network security device.
Public/Granted literature
Information query
Patent Agency Ranking
0/0