Unsupervised neural based hybrid model for sentiment analysis of web/mobile application using public data sources
Abstract:
Machine training for determining sentiments in social network communications. A text document is extracted from a web site and tokenized into tokens. The tokens are input to a word to vector conversion model to generate word vectors. A term frequency inverse document frequency (TF-IDF) algorithm converts the word vectors to sentence vectors. A randomly selected subset the sentence vectors are tagged and used to train a classifier. The classifier takes a sentence vector and predicts a sentiment associated with the sentence vector. Predicted sentiment associated with each of the sentence vectors may be combined to generate a sentiment associated with the text document.
Information query
Patent Agency Ranking
0/0