Classification and identification of disease genes using biased feature correction
Abstract:
Embodiments of the present invention provide methods, computer program products, and systems for classification and identification of cancer genes while correcting for sample bias for tumor-derived genomic features as well as other biased features using machine learning techniques. Embodiments of the present invention can be used to receive a set of genes that include a first gene and a subset of synthetic genes that include similar features to the first gene and receive a set of gene labels associated with physiological characteristics. Embodiments of the present invention can estimate probabilities that genes in the set of genes are associated with gene labels in the set of gene labels using a machine learning classifier and estimate an effective probability range for the first gene and each gene label based, at least in part, on the first gene's estimated probabilities and the estimated probabilities of one or more of the synthetic genes.
Information query
Patent Agency Ranking
0/0