Generating a compact video feature representation in a digital medium environment
Abstract:
Techniques and systems are described to generate a compact video feature representation for sequences of frames in a video. In one example, values of features are extracted from each frame of a plurality of frames of a video using machine learning, e.g., through use of a convolutional neural network. A video feature representation is generated of temporal order dynamics of the video, e.g., through use of a recurrent neural network. For example, a maximum value is maintained of each feature of the plurality of features that has been reached for the plurality of frames in the video. A timestamp is also maintained as indicative of when the maximum value is reached for each feature of the plurality of features. The video feature representation is then output as a basis to determine similarity of the video with at least one other video based on the video feature representation.
Information query
Patent Agency Ranking
0/0