Flight parameter prediction using neural networks
Abstract:
A neural network including a set of input nodes may consume a respective stream of time-series data recorded during a flight of a flying aircraft, each stream of time-series data representing measurements of a respective flight parameter captured by a sensor at various time-steps of the flight. A training circuit set may train the neural network to predict a future measurement of the flight parameter. Training the neural network may include comparing a predictive value from the neural network to a measured value of a flight parameter and modifying structural components of the neural network to bring the predictive value closer to the measured value. A parameter acquisition circuit set may acquire time-series data of a flight parameter. A prediction circuit set may apply the time-series data to the trained neural network to predict the next measurement for the flight parameter in the time-series data.
Public/Granted literature
Information query
Patent Agency Ranking
0/0