Buffer sizing of a NoC through machine learning
Abstract:
The present disclosure is directed to buffer sizing of NoC link buffers by utilizing incremental dynamic optimization and machine learning. A method for configuring buffer depths associated with one or more network on chip (NoC) is disclosed. The method includes deriving characteristics of buffers associated with the one or more NoC, determining first buffer depths of the buffers based on the characteristics derived, obtaining traces based on the characteristics derived, measuring trace skews based on the traces obtained, determining second buffer depths based on the trace skews measured, optimizing the buffer depths associated with the network on chip (NoC) based on the second buffer depths, and configuring the buffer depths associated with one or more network on chip (NoC) based on the buffer depths optimized.
Public/Granted literature
Information query
Patent Agency Ranking
0/0