Histomorphometric classifier to predict cardiac failure from whole-slide hematoxylin and eosin stained images
Abstract:
Methods, apparatus, and other embodiments predict heart failure from WSIs of cardiac histopathology using a deep learning convolutional neural network (CNN). One example apparatus includes a pre-processing circuit configured to generate a pre-processed WSI by downsampling a digital WSI; an image acquisition circuit configured to randomly select a set of non-overlapping ROIs from the pre-processed WSI, and configured to provide the set of non-overlapping ROIs to a deep learning circuit; a deep learning circuit configured to generate an image-level probability that a member of the set of non-overlapping ROIs is a failure/abnormal pathology ROI using a CNN; and a classification circuit configured to generate a patient-level probability that the patient from which the region of tissue represented in the WSI was acquired is experiencing failure or non-failure based, at least in part, on the image-level probability.
Information query
Patent Agency Ranking
0/0