Real-time semantic-aware camera exposure control
Abstract:
An “Exposure Controller” provides various techniques for training and applying a deep convolution network to provide real-time automated camera exposure control, as a real-time function of scene semantic context, in a way that improves image quality for a wide range of image subject types in a wide range of real-world lighting conditions. The deep learning approach applied by the Exposure Controller to implement this functionality first uses supervised learning to achieve a good anchor point that mimics integral exposure control for a particular camera model or type, followed by refinement through reinforcement learning. The end-to-end system (e.g., exposure control and image capture) provided by the Exposure Controller provides real-time performance for predicting and setting camera exposure values to improve overall visual quality of the resulting image over a wide range of image capture scenarios (e.g., back-lit scenes, front lighting, rapid changes to lighting conditions, etc.).
Public/Granted literature
Information query
Patent Agency Ranking
0/0