Story cycle time anomaly prediction and root cause identification in an agile development environment
Abstract:
Methods and apparatuses are described for automated computer text classification and routing using artificial intelligence transfer learning. A server captures historical story data from an Agile development tracking system. For each completed story, the server generates a vector based upon story-specific features and assigns a label to the vector based upon a cycle time associated with the story. The server trains a classification model using a neural network on the vectors and labels. The server captures new story data from the Agile development tracking system. For each new story, the server generates a vector based upon story-specific features and executes the trained model on the vector to generate a cycle time prediction for the new story. Based upon the cycle time prediction, the server identifies deficiencies in the new story and generates an alert message.
Information query
Patent Agency Ranking
0/0