Deep learning-based techniques for pre-training deep convolutional neural networks
Abstract:
The technology disclosed includes systems and methods to reduce overfitting of neural network-implemented models that process sequences of amino acids and accompanying position frequency matrices. The system generates supplemental training example sequence pairs, labelled benign, that include a start location, through a target amino acid location, to an end location. A supplemental sequence pair supplements a pathogenic or benign missense training example sequence pair. It has identical amino acids in a reference and an alternate sequence of amino acids. The system includes logic to input with each supplemental sequence pair a supplemental training position frequency matrix (PFM) that is identical to the PFM of the benign or pathogenic missense at the matching start and end location. The system includes logic to attenuate the training influence of the training PFMs during training the neural network-implemented model by including supplemental training example PFMs in the training data.
Information query
Patent Agency Ranking
0/0