Providing cognitive intelligence across continuous delivery pipeline data
Abstract:
A method, system and computer program product for detecting potential failures in a continuous delivery pipeline. A machine learning model is created to predict whether changed portion of codes under development at various stages of the continuous delivery pipeline will result in a pipeline failure. After creating the machine learning model, log file(s) may be received that were generated by development tool(s) concerning a changed portion of code under development at a particular stage of the continuous delivery pipeline. The machine learning model provides relationship information between the log file(s) and the changed portion of code. A message is then generated and displayed based on this relationship information, where the message may provide a prediction or a recommendation concerning potential failures in the continuous delivery pipeline. In this manner, the potential failures in the continuous delivery pipeline may be prevented without requiring context switching.
Information query
Patent Agency Ranking
0/0