System modeling, control and optimization
Abstract:
A method for modeling an operation of a system that may include a disturbance rejection model that is configured to generate a predicted value for a system output at a future time. The disturbance rejection model may include a neural network for mapping system inputs to the system output. The method may include the steps of: training the disturbance rejection model per a training dataset; and calculating a confidence metric for the disturbance rejection model. The confidence metric is configured to indicate a probability that a predicted sign of a gain in the system output at the future time made by the disturbance rejection model is correct.
Public/Granted literature
Information query
Patent Agency Ranking
0/0