Systems and methods for slate optimization with recurrent neural networks
Abstract:
Systems and methods for generating a slate of ranked items are provided. In one example embodiment, a computer-implemented method includes inputting a sequence of candidate items into a machine-learned model, and obtaining, in response to inputting the sequence of candidate items into the machine-learned model, an output of the machine-learned model that includes a ranking of the candidate items that presents a diverse set of the candidate items at the top positions in the ranking such that one or more highly relevant candidate items can be demoted in the ranking.
Information query
Patent Agency Ranking
0/0