System for inferring network dynamics and sources within the network
Abstract:
Described is a system for inferring network dynamics and their sources within the network. During operation, a vector representation is generated based on states of agents in a network. The vector representation including attribute vectors that correspond to the states of the agents in the network. A matrix representation is then generated based on the changing states of agents by packing the attribute vectors at each time step into an attribute matrix. Time-evolving states of the agents are learned using dictionary learning. Influential source agents in the network are then identified by performing dimensionality reduction on the attribute matrix. Finally, in some aspects, an action is executed based on the identity of the influential source agents. For example, marketing material may be directed to a source agent's online account, or the source agent's online account can be deactivated or terminated or some other desired action can be taken.
Information query
Patent Agency Ranking
0/0