Block floating point computations using reduced bit-width vectors
Abstract:
A system for block floating point computation in a neural network receives a block floating point number comprising a mantissa portion. A bit-width of the block floating point number is reduced by decomposing the block floating point number into a plurality of numbers each having a mantissa portion with a bit-width that is smaller than a bit-width of the mantissa portion of the block floating point number. One or more dot product operations are performed separately on each of the plurality of numbers to obtain individual results, which are summed to generate a final dot product value. The final dot product value is used to implement the neural network. The reduced bit width computations allow higher precision mathematical operations to be performed on lower-precision processors with improved accuracy.
Public/Granted literature
Information query
Patent Agency Ranking
0/0