Updating predictions for a deep-learning model
Abstract:
In one embodiment, a system retrieves a first feature vector for an image. The image is inputted into a first deep-learning model, which is a first-version model, and the first feature vector may be output from a processing layer of the first deep-learning model for the image. The first feature vector using a feature-vector conversion model to obtain a second feature vector for the image. The feature-vector conversion model is trained to convert first-version feature vectors to second-version feature vectors. The second feature vector is associated with a second deep-learning model, and the second deep-learning model is a second-version model. The second-version model is an updated version of the first-version model. A plurality of predictions for the image may be generated using the second feature vector and the second deep-learning model.
Public/Granted literature
Information query
Patent Agency Ranking
0/0