Cross-media search method
Abstract:
A cross-media search method using a VGG convolutional neural network (VGG net) to extract image features. The 4096-dimensional feature of a seventh fully-connected layer (fc7) in the VGG net, after processing by a ReLU activation function, serves as image features. A Fisher Vector based on Word2vec is utilized to extract text features. Semantic matching is performed on heterogeneous images and the text features by means of logistic regression. A correlation between the two heterogeneous features, which are images and text, is found by means of semantic matching based on logistic regression, and thus cross-media search is achieved. The feature extraction method can effectively indicate deep semantics of image and text, improve cross-media search accuracy, and thus greatly improve the cross-media search effect.
Public/Granted literature
Information query
Patent Agency Ranking
0/0