Automatic feature learning from a relational database for predictive modelling
Abstract:
Embodiments for automatic feature learning for predictive modelling in a computing environment by a processor. A first table and a second table are joined based on an edge between the first table and the second table defined by an entity graph thereby creating a resulting joined table that is connected by a column of data. The resulting joined table is used as an input into one or more neural network operations that transform the resulting joined table to one or more features to predict a target variable.
Information query
Patent Agency Ranking
0/0