Control wavelet for accelerated deep learning
Abstract:
Techniques in advanced deep learning provide improvements in one or more of accuracy, performance, and energy efficiency. An array of processing elements performs flow based computations on wavelets of data. Each processing element has a compute element and a routing element. Each compute element has memory. Each router enables communication via wavelets with nearest neighbors in a 2D mesh. A compute element receives a wavelet. If a control specifier of the wavelet is a first value, then instructions are read from the memory of the compute element in accordance with an index specifier of the wavelet. If the control specifier is a second value, then instructions are read from the memory of the compute element in accordance with a virtual channel specifier of the wavelet. Then the compute element initiates execution of the instructions.
Public/Granted literature
Information query
Patent Agency Ranking
0/0