Crowdsourcing system with community learning
Abstract:
Crowdsourcing systems with machine learning are described. Specifically, item-label inference methods and systems are presented, for example, to provide aggregated answers to a crowdsourced task in a manner achieving good accuracy even where observed data about past behavior of crowd members is sparse. In various examples, an item-label inference system infers variables describing characteristics of both individual crowd workers and communities of the workers. In various examples, an item-label inference system provides aggregated labels while considering the inferred worker characteristics and the inferred characteristics of the worker communities. In examples the item-label inference system provides uncertainty information associated with the inference results for selecting workers and generating future tasks.
Public/Granted literature
Information query
Patent Agency Ranking
0/0