Multitask learning as question answering
Abstract:
Approaches for multitask learning as question answering include an input layer for encoding a context and a question, a self-attention based transformer including an encoder and a decoder, a first bi-directional long-term short-term memory (biLSTM) for further encoding an output of the encoder, a long-term short-term memory (LSTM) for generating a context-adjusted hidden state from the output of the decoder and a hidden state, an attention network for generating first attention weights based on an output of the first biLSTM and an output of the LSTM, a vocabulary layer for generating a distribution over a vocabulary, a context layer for generating a distribution over the context, and a switch for generating a weighting between the distributions over the vocabulary and the context, generating a composite distribution based on the weighting, and selecting a word of an answer using the composite distribution.
Public/Granted literature
Information query
Patent Agency Ranking
0/0