Systems and methods for machine learning-based multi-intent segmentation and classification
Abstract:
Systems and methods for synthesizing training data for multi-intent utterance segmentation include identifying a first corpus of utterances comprising a plurality of distinct single-intent in-domain utterances; identifying a second corpus of utterances comprising a plurality of distinct single-intent out-of-domain utterances; identifying a third corpus comprising a plurality of distinct conjunction terms; forming a multi-intent training corpus comprising synthetic multi-intent utterances, wherein forming each distinct multi-intent utterance includes: selecting a first distinct in-domain utterance from the first corpus of utterances; probabilistically selecting one of a first out-of-domain utterance from the second corpus and a second in-domain utterance from the first corpus; probabilistically selecting or not selecting a distinct conjunction term from the third corpus; and forming a synthetic multi-intent utterance including appending the first in-domain utterance with one of the first out-of-domain utterance from the second corpus of utterances and the second in-domain utterance from the first corpus of utterances.
Information query
Patent Agency Ranking
0/0