High precision low bit convolutional neural network
Abstract:
Described herein are systems, methods, and computer-readable media for generating and training a high precision low bit convolutional neural network (CNN). A filter of each convolutional layer of the CNN is approximated using one or more binary filters and a real-valued activation function is approximated using a linear combination of binary activations. More specifically, a non-1×1 filter (e.g., a k×k filter, where k>1) is approximated using a scaled binary filter and a 1×1 filter is approximated using a linear combination of binary filters. Thus, a different strategy is employed for approximating different weights (e.g., 1×1 filter vs. a non-1×1 filter). In this manner, convolutions performed in convolutional layer(s) of the high precision low bit CNN become binary convolutions that yield a lower computational cost while still maintaining a high performance (e.g., a high accuracy).
Public/Granted literature
Information query
Patent Agency Ranking
0/0