Training neural networks using posterior sharpening
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a neural network. In one aspect, a method includes maintaining data specifying, for each of the network parameters, current values of a respective set of distribution parameters that define a posterior distribution over possible values for the network parameter. A respective current training value for each of the network parameters is determined from a respective temporary gradient value for the network parameter. The current values of the respective sets of distribution parameters for the network parameters are updated in accordance with the respective current training values for the network parameters. The trained values of the network parameters are determined based on the updated current values of the respective sets of distribution parameters.
Public/Granted literature
Information query
Patent Agency Ranking
0/0