Semiconductor process for quantum structures with staircase active well incorporating shared gate control
Abstract:
A novel and useful modified semiconductor process having staircase active well shapes that provide variable distances between pairs of locations (i.e. quantum dots) resulting in modulation of the quantum interaction strength from weak/negligible at large separations to moderate and then strong at short separations. To achieve a modulation of the distance between pairs of locations, diagonal, lateral, and vertical quantum particle/state transport is employed. As examples, both implementations of semiconductor quantum structures with tunneling through an oxide layer and with tunneling through a local well depleted region are disclosed. These techniques are applicable to both planar semiconductor processes and 3D (e.g. Fin-FET) semiconductor processes. Optical proximity correction is used to accommodate the staircase well layers. Each gate control circuit in the imposer circuitry functions to control more than one set of control gates. Thus, each gate control circuit is shared across several qubits which are located sufficiently far from each other to prevent interference. This substantially reduces the number of control signals and control logic that required in the structure.
Information query
Patent Agency Ranking
0/0