Unsupervised neighbor-preserving embedding for image stream visualization and anomaly detection
Abstract:
Methods and systems for detecting and correcting anomalous inputs include training a neural network to embed high-dimensional input data into a low-dimensional space with an embedding that preserves neighbor relationships. Input data items are embedded into the low-dimensional space to form respective low-dimensional codes. An anomaly is determined among the high-dimensional input data based on the low-dimensional codes. The anomaly is corrected.
Information query
Patent Agency Ranking
0/0