Systems and methods for detecting documentation drop-offs in clinical documentation
Abstract:
In clinical documentation, mere documentation of a condition in a patient's records may not be enough. To be considered sufficiently documented, the patient's record needs to show that no documentation drop-offs (DDOs) have occurred over the course of the patient's stay. However, DDOs can be extremely difficult to detect. To solve this problem, the invention trains time-sensitive deep learning (DL) models on a per condition basis using actual and/or synthetic patient data. Utilizing an ontology, grouped concepts can be generated on the fly from real-time hospital data and used to generate time-series data that can then be analyzed by trained time-sensitive DL models to determine whether a DDO for a condition has occurred during the stay. Non-time-sensitive models can be used to detect all the conditions documented during the stay. Outcomes from the models can be compared to determine whether to notify a user that a DDO has occurred.
Information query
Patent Agency Ranking
0/0