Systems and methods for selecting global climate simulation models for training neural network climate forecasting models
Abstract:
Methods and systems for generating a multi-model ensemble of global climate simulation data from a plurality of global climate simulation models (GCMs), to be used in training a neural network (NN)-based climate forecasting model, are disclosed. The methods and systems perform steps of computing a GCM validation measure for each GCM; selecting a validated subset of the GCMs, by comparing each computed GCM validation measure to a validation threshold determined based on observational historical climate data; computing a forecast skill score for each validated GCM, based on a first forecast function; selecting a validated and skillful subset of GCMs; generating one or more candidate ensembles by combining simulation data from at least two validated and skillful GCMs; computing an ensemble forecast skill score for each candidate ensemble, based on a second forecast function; and selecting a best-scored candidate ensemble. Embodiments of the present invention enable accurate climate forecasting without the need to run new dynamical global climate simulations on supercomputers.
Information query
Patent Agency Ranking
0/0