Large-scale anomaly detection with relative density-ratio estimation
Abstract:
In one embodiment, a set of training data consisting of inliers may be obtained. A supervised classification model may be trained using the set of training data to identify outliers. The supervised classification model may be applied to generate an anomaly score for a data point. It may be determined whether the data point is an outlier based, at least in part, upon the anomaly score.
Information query
Patent Agency Ranking
0/0