Generation of natural language text from structured data using a fusion model
Abstract:
Generating natural language text from structured data using a fusion model is disclosed. Based on an input dictionary, a first sequence of vectors is generated by a first encoder and a second sequence of vectors is generated by a second encoder. The first and second sequences of vectors are provided to an attention function which generates a modified sequence of vectors. A decoder decodes the modified sequence of vectors to generate a plurality of ordered sequences corresponding to a target natural language sentence. A predetermined number of candidate sentences are determined based on the plurality of ordered sequences and are ranked to select a sentence as the target natural language sentence.
Information query
Patent Agency Ranking
0/0