Automatic feature generation for machine learning in data-anomaly detection
Abstract:
Methods, systems, and computer programs are presented for selecting features for a machine-learning model configured to detect anomalies in the evolution of data over time. One method includes an operation for identifying one or more key fields and value fields from the fields in a relational database. The method also includes grouping data of the value fields based on values of the one or more key fields and calculating one or more statistical values for each group of data of the value fields. The method further includes operations for monitoring an evolution of the one or more statistical values over time, and for selecting, based on the evolution of the one or more statistical values over time, features to be used by a machine-learning model to detect anomalies in content of the relational database over time. The method also includes executing the machine-learning model to detect the anomalies.
Information query
Patent Agency Ranking
0/0