Token-wise training for attention based end-to-end speech recognition
Abstract:
A method of attention-based end-to-end (A-E2E) automatic speech recognition (ASR) training, includes performing cross-entropy training of a model, based on one or more input features of a speech signal, determining a posterior probability vector at a time of a first wrong token among one or more output tokens of the model of which the cross-entropy training is performed, and determining a loss of the first wrong token at the time, based on the determined posterior probability vector. The method further includes determining a total loss of a training set of the model of which the cross-entropy training is performed, based on the determined loss of the first wrong token, and updating the model of which the cross-entropy training is performed, based on the determined total loss of the training set.
Information query
Patent Agency Ranking
0/0