Method and apparatus for fast scatter simulation and correction in computed tomography (CT)
Abstract:
X-ray scatter simulations to correct computed tomography (CT) data can be accelerated using a non-uniform discretization of the RTE, reducing the number of computations without sacrificing precision. For example, a coarser discretization can be used for higher-order/multiple-scatter flux, than for first-order-scatter flux. Similarly, precision is preserved when coarser angular resolution is used to simulate scatter within a patient, and finer angular resolution used for the scatter flux incident on detectors. Finer energy resolution is more beneficial at lower X-ray energies, and coarser spatial resolution can be applied to regions exhibiting less X-ray scatter (e.g., air and regions with low radiodensity). Further, predefined non-uniform discretization can be learned from scatter simulations on training data (e.g., a priori compressed grids learned from non-uniform grids generated by adaptive mesh methods).
Information query
Patent Agency Ranking
0/0