Providing insight of continuous delivery pipeline using machine learning
Abstract:
A method, system and computer program product for detecting potential failures in completing a continuous delivery (CD) pipeline using machine learning. A CD pipeline is defined to include stages, where each stage includes a binary event(s). A model is created by applying an Apriori algorithm and a sequential pattern mining algorithm to a set of previous patterns of sequences of binary events to calculate confidence scores for completing a set of binary events in a particular order. After identifying an ongoing CD sequence (ordered set of binary events) for a software application, the model is used to predict a likelihood of the ongoing CD sequence for the software application completing the CD pipeline by generating confidence score(s) for the ongoing CD sequence. A notification is issued regarding a potential failure in completing the CD pipeline for the software application if a confidence score is below a threshold value.
Information query
Patent Agency Ranking
0/0