Personalized auto-triage of communications
Abstract:
One embodiment provides a method comprising extracting natural language content from a piece of communication for a user, generating a representation of the piece of communication based on the natural language content extracted, and utilizing a global deep learning model and a personalized learning model for the user to assign a priority label to the piece of communication based on the representation and user behavioral information associated with recent conversations of the user. Another embodiment provides a method comprising, for each piece of communication of a set of multiple pieces of communication for multiple users, extracting natural language content from the piece communication and generating a representation of the piece of communication based on the natural language extracted, and training a deep learning neural network to predict a degree of priority of a subsequent piece of communication based on each representation generated.
Public/Granted literature
Information query
Patent Agency Ranking
0/0