Self learning data loading optimization for a rule engine
Abstract:
Methods and systems for using machine learning to automatically determine a data loading configuration for a computer-based rule engine are presented. The computer-based rule engine is configured to use rules to evaluate incoming transaction requests. Data of various data types may be required by the rule engine when evaluating the incoming transaction requests. The data loading configuration specifies pre-loading data associated with at least a first data type and lazy-loading data associated with at least a second data type. Statistical data such as use rates and loading times associated with the various data types may be supplied to a machine learning module to determine a particular loading configuration for the various data types. The computer-based rule engine then loads data according to the data loading configuration when evaluating a subsequent transaction request.
Public/Granted literature
Information query
Patent Agency Ranking
0/0